Factor investing

Top Ten Blog Posts on Quantpedia in 2024

30.December 2024

The year 2024 is nearly behind us, so it’s an excellent time for a short recapitulation. In the previous 12 months, we have been busy again (as usual) and have published over 70 short analyses of academic papers and our own research articles. The end of the year is a good opportunity to summarize 10 of them, which were the most popular (based on the Google Analytics ranking). The top 10 is diverse, as usual; once again, we hope that you may find something you have not read yet …

Continue reading

Design Choices in ML and the Cross-Section of Stock Returns

17.December 2024

For those who have not yet had the chance to read it, we recommend the latest empirical study by Minghui Chen, Matthias X. Hanauer, and Tobias Kalsbach, which shows that design choices in machine learning models, such as feature selection and hyperparameter tuning, are crucial to improving portfolio performance. Non-standard errors in machine learning predictions can lead to substantial portfolio return variations, and authors are highlighting the importance of robust model evaluation techniques.

Continue reading

Can We Use Active Share Measure as a Predictor?

12.December 2024

Active Share is a popular metric used to gauge how actively managed a portfolio is compared to its benchmark, but its predictive power for fund performance is questionable. Our research suggests that high Active Share often reflects exposure to systematic equity factors rather than genuine stock-picking skill. Additionally, inaccuracies in benchmark selection can distort the metric’s insights, making it unreliable as a standalone measure. A more effective approach is to conduct a factor analysis of alpha to better understand a manager’s performance and true sources of over/underperformance.

Continue reading

Trader’s Guide to Front-Running Commodity Seasonality

5.December 2024

Seasonality is a well-known phenomenon in the commodity markets, with certain sectors exhibiting predictable patterns of performance during specific times of the year. These patterns often attract investors who aim to capitalize on anticipated price movements, creating a self-reinforcing cycle. But what if you could stay one step ahead of the crowd? By front-running these seasonal trends—buying sectors with expected positive performance (or shorting those with negative seasonality) before their favorable months begin—you can potentially gain a significant edge over traditional seasonality-based strategies. In this blog post, we explore how to construct and backtest a systematic strategy using commodity sector ETFs to exploit this seasonal front-running effect.

Continue reading

The Impact of Methodological Choices on Machine Learning Portfolios

4.November 2024

Studies using machine learning techniques for return forecasting have shown considerable promise. However, as in empirical asset pricing, researchers face numerous decisions around sampling methods and model estimation. This raises an important question: how do these methodological choices impact the performance of ML-driven trading strategies? Recent research by Vaibhav, Vedprakash, and Varun demonstrates that even small decisions can significantly affect overall performance. It appears that in machine learning, the old adage also holds true: the devil is in the details.

Continue reading

How to Build Mean Reversion Strategies in Currencies

25.October 2024

Our article explores a simple mean reversion trading strategy applied to FX futures, focusing on identifying undervalued and overvalued currencies to generate returns. Using FX futures rather than spot rates allows for the inclusion of interest rate differentials, simplifying the analysis. The strategy employs two position-sizing methods—linear and exponential—both rebalanced monthly based on currency deviations from their mean. While the linear method offers stability, its returns are limited. In contrast, the exponential method, despite higher risk and deeper drawdowns, ultimately delivers stronger growth and better overall performance by leveraging the mean reversion tendencies of FX pairs.

Continue reading
Subscription Form

Subscribe for Newsletter

 Be first to know, when we publish new content
logo
The Encyclopedia of Quantitative Trading Strategies

Log in

QuantPedia
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.