Momentum
Momentum is the tendency of investments to persist in their performance. Assets that perform well over a 3 to 12 month period tend to continue to perform well into the future. The momentum effect of Jegadeesh and Titman (1993) is one of the strongest and most pervasive financial phenomena. Momentum investment strategies have been mostly applied to equities (see momentum in equities), however there is large evidence documenting momentum across different asset classes. Typical strategy consists of a universe of major indices on equity, bonds, real estate and commodities. The aim is to keep long only portfolio where an index with positive past 12 month returns is bought and negative returns sold. A well-known example of trend following momentum strategy is from Faber (2007). He creates 10 month moving average for which assets are sold and bought every month based on price being above or below the moving average. Using a 100 years of data, Faber claims to outperform the market with the mean return of 10.18% , 11.97 % volatility and max draw-down of 50.29%, compared to S&P 500 return of 9.32%, volatility of 17.87% and max draw-down of 83.46%.
In general, we distinguish between absolute and relative momentum. Absolute momentum is captured by trend following strategies that adjusts weights of assets based on past returns such as relative level of current prices compared to moving averages. Relative or cross sectional momentum, on the other hand, use long and short positions applied to both the long and short side of a market simultaneously. It makes little difference whether the studied markets go up or down, since short momentum positions hedge long ones, and vice versa. When looking only at long side momentum, however, it is desirable to be long only when both absolute and relative momentum are positive, since long-only momentum results are highly regime dependent. In order to increase performance, the simple momentum strategy is expanded to capture both relative and absolute momentum creating a long short portfolio.
Various extensions to the simple strategies shown above have been suggested. For example we can deploy mean-variance optimisation to re-weight our assets to minimise the risk given return. Moreover, we can diversify the strategy by restricting the weights to different asset classes and risk factors as well as adding various risk management practices to decrease leverage during heightened volatility periods. Furthermore, taking into account the cyclicality and idiosyncratic momentum of various sub-indices to Faber’s original asset classes produces even stronger improvements to risk-adjusted returns. Unfortunately, cross-sectional strategies use high number of stocks resulting in high trading costs. Luckily, it has been found that using sectors and indices instead of individual stocks still earns similar momentum returns while having lower trading costs.
Numerous empirical studies report on benefits of extending momentum strategy across asset classes (see Rouwenhorst 1998, Blake 1999, Griffin, Ji, and Martin 2003, Gorton, Hayashi, and Rouwenhorst 2008, Asness, Moskowitz, and Pedersen 2009). For example, including commodities in a momentum strategy can achieve better diversification and protection from inflation while having equity like returns (Erb and Harvey, 2006). Foreign exchange is another asset class with published momentum effects. Okunev and White (2003) find the well-documented profitability of momentum strategies with equities to hold for currencies throughout the 1980s and the 1990s. Contrary to already mentioned asset classes, bond returns have generally not displayed momentum. However, some later evidence suggests that assorting bonds with volatility adjusted returns leads to observation of momentum. Using 68,914 individual investment-grade and high-yield bonds, Jostova et al. (2013) find strong evidence of momentum profitability in US corporate bonds over the period from 1973 to 2008. Past six-month winners outperform past six-month losers by 61 basis points per month over a six-month holding period. Last but not least, momentum has been documented in real estate with a cross-sectional momentum buy/sell strategy significantly reducing volatility and drawdown of a long only REIT fund.
An often cited benefit of momentum strategies is their sustainable performance attributed to a true anomaly rather than skewedness in the return probability distribution that is cited to be responsible for value and carry strategy. Reasons explaining the momentum anomaly include analyst coverage, analyst forecast dispersion, illiquidity, price level, age, size, credit rating, return chasing and confirmation bias, market-to-book, turnover and others.
18.February 2025
For decades, investors and analysts have relied on traditional industry classifications like GICS, NAICS, or SIC to group companies into sectors and peer groups. However, these rigid categorizations often fail to capture the evolving nature of businesses, especially in an era of technological convergence and rapid industry shifts. Machine learning (ML) offers a more dynamic and data-driven alternative by analyzing company visuals—such as logos, product images, and branding elements—to identify similarities that go beyond predefined classifications. A recent study applies this approach to construct new industry groupings and tests them in industry momentum and reversal strategies. The results show that ML-generated groups lead to superior performance, once again highlighting the potential of image-based classification in financial analysis.
Continue reading
16.January 2025
Can we simplify the complexities of the stock market and distill them into a simple set of quantifiable metrics? A lot of academic papers suggest this, and they offer formulas that should make the life of a stock picker easier. Some of the most compelling methodologies within this realm are the F-Score, Magic Formula, Acquirer’s Multiple, and the Conservative Formula. These quantitative strategies are designed to identify undervalued stocks with robust fundamentals and potential for high returns. But do they really work out-of-sample? A new paper by Marcel Schwartz and Matthias X. Hanauer tries to answer this interesting question…
Continue reading
10.January 2025
Today’s research introduces a refined ETF asset momentum strategy by combining a correlation filter with selective shorting. While traditional long-short momentum strategies usually yield suboptimal results, the long leg proves effective on its own, and the correlation filter demonstrates significant value for improving the timing and performance of the short leg. We propose a final strategy of going long on 4 top-performing ETFs while selectively shorting 1 ETF with a 30% weight. Our findings demonstrate that this combined long-short selective hedge strategy significantly outperforms standalone momentum strategies and the benchmark, delivering superior risk-adjusted returns and effective hedging during unfavorable market conditions.
Continue reading
30.December 2024
The year 2024 is nearly behind us, so it’s an excellent time for a short recapitulation. In the previous 12 months, we have been busy again (as usual) and have published over 70 short analyses of academic papers and our own research articles. The end of the year is a good opportunity to summarize 10 of them, which were the most popular (based on the Google Analytics ranking). The top 10 is diverse, as usual; once again, we hope that you may find something you have not read yet …
Continue reading
12.December 2024
Active Share is a popular metric used to gauge how actively managed a portfolio is compared to its benchmark, but its predictive power for fund performance is questionable. Our research suggests that high Active Share often reflects exposure to systematic equity factors rather than genuine stock-picking skill. Additionally, inaccuracies in benchmark selection can distort the metric’s insights, making it unreliable as a standalone measure. A more effective approach is to conduct a factor analysis of alpha to better understand a manager’s performance and true sources of over/underperformance.
Continue reading
12.November 2024
As interest in cryptocurrencies continues to surge, driven by each new price rally, crypto assets have solidified their position as one of the main asset classes in global markets. Unlike traditional assets, which primarily trade during standard working hours, cryptocurrencies trade 24/7, presenting a unique landscape of liquidity and volatility. This continuous trading environment has prompted us to investigate how Bitcoin, the flagship cryptocurrency, behaves across intraday and overnight periods. With Bitcoin’s growing availability to both retail and institutional investors through ETFs and other investment vehicles, we hypothesized that trading activity in these distinct timeframes could reveal patterns similar to those seen in traditional markets, where returns are often impacted by liquidity shifts during off-peak hours.
Continue reading