Momentum

Momentum is the tendency of investments to persist in their performance. Assets that perform well over a 3 to 12 month period tend to continue to perform well into the future. The momentum effect of Jegadeesh and Titman (1993) is one of the strongest and most pervasive financial phenomena. Momentum investment strategies have been mostly applied to equities (see momentum in equities), however there is large evidence documenting momentum across different asset classes. Typical strategy consists of a universe of major indices on equity, bonds, real estate and commodities. The aim is to keep long only portfolio where an index with positive past 12 month returns is bought and negative returns sold. A well-known example of trend following momentum strategy is from Faber (2007). He creates 10 month moving average for which assets are sold and bought every month based on price being above or below the moving average. Using a 100 years of data, Faber claims to outperform the market with the mean return of 10.18% , 11.97 % volatility and max draw-down of 50.29%, compared to S&P 500 return of 9.32%, volatility of 17.87% and max draw-down of 83.46%.

In general, we distinguish between absolute and relative momentum. Absolute momentum is captured by trend following strategies that adjusts weights of assets based on past returns such as relative level of current prices compared to moving averages. Relative or cross sectional momentum, on the other hand, use long and short positions applied to both the long and short side of a market simultaneously. It makes little difference whether the studied markets go up or down, since short momentum positions hedge long ones, and vice versa. When looking only at long side momentum, however, it is desirable to be long only when both absolute and relative momentum are positive, since long-only momentum results are highly regime dependent. In order to increase performance, the simple momentum strategy is expanded to capture both relative and absolute momentum creating a long short portfolio.

Various extensions to the simple strategies shown above have been suggested. For example we can deploy mean-variance optimisation to re-weight our assets to minimise the risk given return. Moreover, we can diversify the strategy by restricting the weights to different asset classes and risk factors as well as adding various risk management practices to decrease leverage during heightened volatility periods. Furthermore, taking into account the cyclicality and idiosyncratic momentum of various sub-indices to Faber’s original asset classes produces even stronger improvements to risk-adjusted returns. Unfortunately, cross-sectional strategies use high number of stocks resulting in high trading costs. Luckily, it has been found that using sectors and indices instead of individual stocks still earns similar momentum returns while having lower trading costs.

Numerous empirical studies report on benefits of extending momentum strategy across asset classes (see Rouwenhorst 1998, Blake 1999, Griffin, Ji, and Martin 2003, Gorton, Hayashi, and Rouwenhorst 2008, Asness, Moskowitz, and Pedersen 2009). For example, including commodities in a momentum strategy can achieve better diversification and protection from inflation while having equity like returns (Erb and Harvey, 2006). Foreign exchange is another asset class with published momentum effects. Okunev and White (2003) find the well-documented profitability of momentum strategies with equities to hold for currencies throughout the 1980s and the 1990s. Contrary to already mentioned asset classes, bond returns have generally not displayed momentum. However, some later evidence suggests that assorting bonds with volatility adjusted returns leads to observation of momentum. Using 68,914 individual investment-grade and high-yield bonds, Jostova et al. (2013) find strong evidence of momentum profitability in US corporate bonds over the period from 1973 to 2008. Past six-month winners outperform past six-month losers by 61 basis points per month over a six-month holding period. Last but not least, momentum has been documented in real estate with a cross-sectional momentum buy/sell strategy significantly reducing volatility and drawdown of a long only REIT fund.

An often cited benefit of momentum strategies is their sustainable performance attributed to a true anomaly rather than skewedness in the return probability distribution that is cited to be responsible for value and carry strategy. Reasons explaining the momentum anomaly include analyst coverage, analyst forecast dispersion, illiquidity, price level, age, size, credit rating, return chasing and confirmation bias, market-to-book, turnover and others.

Can We Use Active Share Measure as a Predictor?

12.December 2024

Active Share is a popular metric used to gauge how actively managed a portfolio is compared to its benchmark, but its predictive power for fund performance is questionable. Our research suggests that high Active Share often reflects exposure to systematic equity factors rather than genuine stock-picking skill. Additionally, inaccuracies in benchmark selection can distort the metric’s insights, making it unreliable as a standalone measure. A more effective approach is to conduct a factor analysis of alpha to better understand a manager’s performance and true sources of over/underperformance.

Continue reading

How To Profitably Trade Bitcoin’s Overnight Sessions?

12.November 2024

As interest in cryptocurrencies continues to surge, driven by each new price rally, crypto assets have solidified their position as one of the main asset classes in global markets. Unlike traditional assets, which primarily trade during standard working hours, cryptocurrencies trade 24/7, presenting a unique landscape of liquidity and volatility. This continuous trading environment has prompted us to investigate how Bitcoin, the flagship cryptocurrency, behaves across intraday and overnight periods. With Bitcoin’s growing availability to both retail and institutional investors through ETFs and other investment vehicles, we hypothesized that trading activity in these distinct timeframes could reveal patterns similar to those seen in traditional markets, where returns are often impacted by liquidity shifts during off-peak hours.

Continue reading

How to Improve ETF Sector Momentum

10.October 2024

In this article, we explore the historical performance of sector momentum strategies and examine how their alpha has diminished over time. By analyzing the underlying causes behind this decline, we identify key factors contributing to the underperformance. Most importantly, we introduce an enhanced approach to sector momentum, demonstrating how this solution significantly improves the performance of an ETF sector momentum strategy, making it once again an effective tool for systematic investors.

Continue reading

How to Improve Commodity Momentum Using Intra-Market Correlation

16.September 2024

Momentum is one of the most researched market anomalies, well-known and widely accepted in both public and academic sectors. Its concept is straightforward: buy an asset when its price rises and sell it when it falls. The goal is to take advantage of these trends to achieve better returns than a simple buy-and-hold strategy. Unfortunately, over the last decades, we have been observers of the diminishing returns of the momentum strategies in all asset classes. In this article, we will present an intra-market correlation filter that can help significantly improve commodity momentum performance and return this strategy once again into the spotlight.

Continue reading

Revisiting Trend-following and Mean-reversion Strategies in Bitcoin

12.September 2024

Over the past few years, significant shifts in the financial landscape have reshaped the dynamics of global markets, including the cryptocurrency sector. Events such as the ongoing war in Ukraine, rising inflation rates, the soft landing scenario in the US economy, and the recent Bitcoin halving have all profoundly impacted market sentiment and price movements. Given these developments, we decided to revisit and reassess trading strategies, specifically Trend-following and Mean-reversion in Bitcoin published in 2022, which utilized data from November 2015 to February 2022. This new study explores how these strategies would have performed from November 2015 to August 2024, taking recent changes into account. The study also examines market changes between February 2022 and August 2024, highlighting developments since previous research. Additionally, it evaluates the influence of seasonality on Bitcoin’s price action, similar to our previous article – The Seasonality of Bitcoin. By analyzing these factors, we aim to provide deeper insights into the evolving behavior of the world’s leading cryptocurrency and guide investors through the complexities of today’s market environment.

Continue reading
Subscription Form

Subscribe for Newsletter

 Be first to know, when we publish new content
logo
The Encyclopedia of Quantitative Trading Strategies

Log in