Stock picking

Decreasing Returns of Machine Learning Strategies

10.November 2023

Traditional asset pricing literature has yielded numerous anomaly variables for predicting stock returns, but real-world outcomes often disappoint. Many of these predictors work best in small-cap stocks, and their profitability tends to decline over time, particularly in the United States. As market efficiency improves, exploiting these anomalies becomes harder. The fusion of machine learning with finance research offers promise. Machine learning can handle extensive data, identify reliable predictors, and model complex relationships. The question is whether these promises can deliver more accurate stock return predictions…

Continue reading

Is It Good to Be Bad? – The Quest for Understanding Sin vs. ESG Investing

2.November 2023

What are our expectations from the ESG theme on the portfolio management level? The question is whether ESG investing also offers some kind of “alternative alpha”, or outperformance against the traditional benchmarks. There are managers and academics who are enthusiastic and hope for the outperformance of the good ESG stocks. However, the academic research community is really split. Some academic papers show positive alpha for “Saints” (good ESG stocks); others show significantly positive alpha for “Sinners” (bad ESG stocks). So, how it’s in reality? Is it “Good to be Bad”? Or the other way around?

Continue reading

What’s the Key Factor Behind the Variation in Anomaly Returns?

13.October 2023

In a game of poker, it is usually said that when you do not know who the patsy is, you’re the patsy. The world of finance is not different. It is good to know who your counterparties are and which investors/traders drive the return of anomalies you focus on. We discussed that a few months ago in a short blog article called “Which Investors Drive Factor Returns?“. Different sets of investors and their approaches drive different anomalies, and we have one more paper that helps uncover the motivation of investors and traders for trading and their impact on anomaly returns.

Continue reading

Performance of Factor Strategies in India

31.August 2023

India is a big emerging market, actually the second biggest after China. We primarily look at developed markets, mostly the U.S. and Europe, and from Emerging Markets, China at most, and we are aware that we neglect this prospective country. We would like to correct this notion and give attention to a country that is (along with China) being cited as a new potential rising superpower and already looking to take the lead of Emerging Markets (EM) countries. Today, we would like to review the paper that analyzes the performance of main equity factors (with an emphasis on the Quality factor) and is a good starting point to understand the specifics of factor investing strategies in India.

Continue reading

Dissecting the Performance of Low Volatility Investing

28.August 2023

Low volatility investing is an appealing approach to compound wealth in the stock market for the long term. This particular factor investing style exploits the popular naive notion that lower (higher) risk must always equal lower (higher) overall returns. But in fact, this naive assumption is not true, as low-volatility investments often yield more than their high-volatility counterparts. While low-volatility investing has many advantages, it also results in some disadvantages. How to overcome them? Bernhard Breloer, Martin Kolrep, Thorsten Paarmann, and Viorel Roscovan, in their study Dissecting the Performance of Low Volatility Investing, propose a solution.

Continue reading

Exploring the Factor Zoo with a Machine-Learning Portfolio

3.August 2023

The latest paper by Sak, H. and Chang, M. T., and Huang, T. delves into the world of financial anomalies, exploring the rise and fall of characteristics in what researchers refer to as the “factor zoo.” While significant research effort is devoted to discovering new anomalies, the study highlights the lack of attention given to the evolution of these characteristics over time. By leveraging machine learning (ML) techniques, the paper conducts a comprehensive out-of-sample factor zoo analysis, seeking to uncover the underlying factors driving stock returns. The researchers train ML models on a vast database of firm and trading characteristics, generating a diverse range of linear and non-linear factor structures. The ML portfolio formed based on these findings outperforms entrenched factor models, presenting a novel approach to understanding financial anomalies. Notably, the paper identifies two subsets of dominant characteristics – one related to investor-level arbitrage constraint and the other to firm-level financial constraint – which alternately play a significant role in generating the ML portfolio return.

Continue reading

Subscribe for Newsletter

Be first to know, when we publish new content


    logo
    The Encyclopedia of Quantitative Trading Strategies

    Log in