Machine learning

Decreasing Returns of Machine Learning Strategies

10.November 2023

Traditional asset pricing literature has yielded numerous anomaly variables for predicting stock returns, but real-world outcomes often disappoint. Many of these predictors work best in small-cap stocks, and their profitability tends to decline over time, particularly in the United States. As market efficiency improves, exploiting these anomalies becomes harder. The fusion of machine learning with finance research offers promise. Machine learning can handle extensive data, identify reliable predictors, and model complex relationships. The question is whether these promises can deliver more accurate stock return predictions…

Continue reading

Hello ChatGPT, Can You Backtest Strategy for Me?

18.October 2023

You may remember our blog post from the end of March, where we tested the current state-of-the-art LLM chatbot. Time flies fast. More than six months have passed since our last article, and half a year in a fast-developing field like Artificial intelligence feels like ten times more. So, we are here to revisit our article and try some new hacks! Has the OpenAI chatbot made any significant improvement? Can ChatGPT be used as a backtesting engine? We retake our risk parity asset allocation and test the limits of current AI development again!

Continue reading

An Introduction to Machine Learning Research Related to Quantitative Trading

26.September 2023

Following the recent release of the popular large language model ChatGPT, the topic of machine learning and AI seems to have skyrocketed in popularity. The concept of machine learning is, however, a much older one and has been the topic of various research and technology projects over the last decade and even longer. In this article, we would like to discuss what machine learning is, how it can be used in quantitative trading, and how has the popularity of ML strategies increased over the years.

Continue reading

Exploring the Factor Zoo with a Machine-Learning Portfolio

3.August 2023

The latest paper by Sak, H. and Chang, M. T., and Huang, T. delves into the world of financial anomalies, exploring the rise and fall of characteristics in what researchers refer to as the “factor zoo.” While significant research effort is devoted to discovering new anomalies, the study highlights the lack of attention given to the evolution of these characteristics over time. By leveraging machine learning (ML) techniques, the paper conducts a comprehensive out-of-sample factor zoo analysis, seeking to uncover the underlying factors driving stock returns. The researchers train ML models on a vast database of firm and trading characteristics, generating a diverse range of linear and non-linear factor structures. The ML portfolio formed based on these findings outperforms entrenched factor models, presenting a novel approach to understanding financial anomalies. Notably, the paper identifies two subsets of dominant characteristics – one related to investor-level arbitrage constraint and the other to firm-level financial constraint – which alternately play a significant role in generating the ML portfolio return.

Continue reading

BERT Model – Bidirectional Encoder Representations from Transformers

12.April 2023

At the end of 2018, researchers at Google AI Language made a significant breakthrough in the Deep Learning community. The new technique for Natural Language Processing (NLP) called BERT (Bidirectional Encoder Representations from Transformers) was open-sourced. An incredible performance of the BERT algorithm is very impressive. BERT is probably going to be around for a long time. Therefore, it is useful to go through the basics of this remarkable part of the Deep Learning algorithm family.

Continue reading

Can We Backtest Asset Allocation Trading Strategy in ChatGPT?

31.March 2023

It’s always fun to push the boundaries of technology and see what it can do. The AI chatbots are the hot topic of current discussion in the quant blogosphere. So we have decided to test OpenAI’s ChatGPT abilities. Will we persuade it to become a data analyst for us? While we may not be there yet, it’s clear that AI language models like ChatGPT can soon revolutionize how we approach to finance and data analysis.

Continue reading

Subscribe for Newsletter

Be first to know, when we publish new content


    logo
    The Encyclopedia of Quantitative Trading Strategies

    Log in