Factor investing

Should Factor Investors Neutralize the Sector Exposure?

8.February 2022

Factor investors face numerous choices that do not end even after picking the set of factors. For instance, should they neutralize the factor exposure? If the investor pursues sector neutralization, does the decision depend on a particular factor? Or are the choices different for the long-only investor compared to the long-short investor? The research paper by Ehsani, Harvey, and Li (2021) answers these questions and provides investors with an interesting insight on this topic.

Continue reading

Factor Performance in Bull and Bear Markets

27.January 2022

Do common equity factors suffer during bear markets? Undoubtedly, the market factor is a rather unpleasant investment during bear markets, but what about the long-short factors? Are they able to deliver performance? The research paper by Geertsema and Lu (2021) provides several answers and interesting insights.

Continue reading

Quality Factor in Sector Investing

14.January 2022

The critical question of this research is to examine whether the quality factor could be found in the aggregated groups of similar stocks such as industries or sectors. Additionally, instead of constructing a comprehensive quality metric like other papers, we examine the individual ratios aggregated to the whole sector. The aim is to investigate the fundamental ratios on which quality is based rather than the composite quality score of sectors.

Continue reading

Out-of-sample Dataset Before the “Sample”: Pervasive Anomalies Before 1926

30.November 2021

Data are the key to systematic investing/trading strategies. The hypotheses testing, risk or return evaluations, correlations, and factor loadings rely on past data and backtests. With an increasing speed of publication in finance, critiques of quantitative strategies have emerged. Strategies seem to decay in alpha, post-publication returns tend to be lower, and many strategies become insignificant once rigorously tested (in or out-of-sample). Moreover, some might even appear profitable purely by chance and the repetitive examination of the same dataset, such as CRSP stocks after 1963. 

Is there any solution to overcome these limitations? Partially, the design of the novel machine learning strategies consisting of training, validation, and testing sets might help. Perhaps the most crucial part of such a scheme is the usage of the purely out-of-sample dataset. In this regard, the novel research by Baltussen et al. (2021) provides several valuable findings for the most recognized factors. The authors constructed a database of U.S. stocks, including dividends and market caps for 1488 major stocks from 1866 to 1926. The sample can be described as the pre-CRSP period, including independent, pre-publication, and “out-of-sample” data that can be a perfect test for the factors utilized today. 

Continue reading

The Quant Cycle – The Time Variation in Factor Returns

22.November 2021

Although the factors in asset pricing models offer a premium in the long run, they are undergoing bull and bear market cycles in the short term. One would expect that it is due to their connection to the business cycles as the factor premium represents a reward for bearing the macroeconomic risks. A novel study by Blitz (2021) finds that traditional business cycle indicators can’t explain much of the time variation of factor returns as the factors are a behavioral phenomenon driven by investor sentiment. To capture the large factor cyclical variation, the author proposes a quant cycle that is defined by the peaks and troughs in the factor returns corresponding to the bull and bear markets.

Continue reading

Community Alpha of QuantConnect – Part 4: Composite Social Trading Multi-Factor Strategy

18.November 2021

This blog post is the continuation (and finale) of series about Quantconnect’s Alpha market strategies. This part is related to the multi-factor strategies notoriously known from the majority of asset classes. We continue in the examination of factor strategies built on top of social trading strategies, but the investment universe is reduced based on the insights of the previous part. So, without further ado, we continue where we have left last time.

Continue reading
Subscription Form

Subscribe for Newsletter

 Be first to know, when we publish new content
logo
The Encyclopedia of Quantitative Trading Strategies

Log in