Factor investing

How to Combine Different Momentum Strategies

15.November 2021

Today we will again talk more about the portfolio management theory, and we will focus on techniques for combining quantitative strategies into one multi-strategy portfolio. So, let’s imagine we already have a set of profitable investment strategies, and we need to combine them. The goal of such “strategy allocation” usually is to achieve the best risk-adjusted return possible. There is no single correct solution to this task, but there are a few methods that we can try.

The “appropriate combination” highly depends on the type of strategies we are about to combine. Are we combining equity and bond strategies together? Are we combining equity strategies, with each one having an entirely different logic? Or do we rather need to assign weights to strategies that are similar in nature yet still different? We will focus this article on the last option – combining similar yet different strategies.

Continue reading

Six Examples of Trading Strategies That Use Alternative Data

26.October 2021

Why has been alternative data recently so much popular? The answer most of the time hovers around the notion of “seeking the new alpha sources”. First, the hunt for alpha is huge due to the low yield world and is getting only bigger. Secondly, some of the more popular strategies can become crowded, leading to diminishing alpha or the risk of a sudden reversal in performance (all of us remember this year’s growth vs. value switch).

We at Quantpedia don’t create nor manage any alternative data sets. But we are aware of this trend, and we strive hard to find new alpha opportunities which may lie in these new data sources. From the database of almost 700 quantitative investment strategies Quantpedia has gathered, almost 100 strategies are based on alternative datasets. Today, we picked just 6 of them to give you a little taste of how these alternative strategies may look like, what kind of datasets they utilize and how they perform.

Continue reading

Asset Pricing Models in China

27.September 2021

The CAPM model was a breakthrough for asset pricing, but the times where the market factor was most widely used are long gone. Nowadays, if we exaggerate a bit, we have as many factors as we want. Therefore, it might not be straightforward which factor model should be used. 

Hanauer et al. (2021) provide several insights into factor models. The authors postulate that the factor models should be examined in the international samples since this can be understood as a test for asset pricing models. The domestic Chinese A-shares stock market seems to be an excellent “playground” for the factors models, given the size of the Chinese stock market, but mainly because of its uniqueness. The paper compares the models (and factors) based on various methods (performance, data-driven asset pricing framework, test assets, turnovers and even transaction costs). Apart from valuable insights into the several less-known factors, the key takeaway message could be that the “US classic” Fama-French factor models perform poorly in China. The modified Fama-French six-factor model or q-factor is better, but overall, it seems that factor models designed for China, such as the model of Liu, Stambaugh and Yuan (2019), are the best.

Continue reading

Introduction to Clustering Methods In Portfolio Management – Part 2

22.September 2021

October’s is coming, and we continue our short series of introductory articles about portfolio clustering methods we will soon use in our new Quantpedia Pro report. In the previous blog, we introduced three clustering methods and discussed the pros and cons of each one. Additionally, we showed a few examples of clustering, and we presented various methods for picking an optimal number of clusters.

This section demonstrates the Partitioning Around Medoids (PAM) – a centroid-based clustering method, Hierarchical Clustering, which uses machine learning and Gaussian Mixture Model based on probability distribution and applies all three methods to an investment portfolio that consists of eight liquid ETFs.

Continue reading

Community Alpha of QuantConnect – Part 3: Adjusted Social Trading Factor Strategies

20.September 2021

This blog post is the continuation of series about Quantconnect’s Alpha market strategies. Part 1 is here and Part 2 can be found here. This part is related to the factor strategies notoriously known from the majority of asset classes. We continue in the examination of factor strategies built on top of social trading strategies, but in this part, the investment universe is reduced based on the insights of the last part. So, without further ado, we continue where we have left last time.

Continue reading

How to Use Lexical Density of Company Filings

10.September 2021

The application of alternative data is currently a strong trend in the investment industry. We, too, analyzed few datasets in the past, be it ESG datasentiment, or company fillings. This article continues the exploration of the alt-data space. This time, we use the research paper by Joenväärä et al., which shows that lexically diverse hedge funds outperform lexically homogeneous as an inspiration for us to analyze various lexical metrics in 10-K & 10-Q reports. Once again, we show that it makes sense to transmit ideas from one research paper to completely different asset class.

Continue reading
Subscription Form

Subscribe for Newsletter

 Be first to know, when we publish new content
logo
The Encyclopedia of Quantitative Trading Strategies

Log in