The Active vs Passive: Smart Factors, Market Portfolio or Both?

11.December 2020

While there may be debates about passive and active investing, and even blogs about the numbers of active funds that were outperformed by the market, the history taught us that the outperformance of active or passive investing is cyclical. As a proxy for the active investing, the new Quantpedia’s research paper examines factor strategies and their smart allocation using fast or slow time-series momentum signals, the relative weights based on the strength of the signals and even blending the signals. While the performance can be significantly improved, using those smart approaches, the factors still got beaten by the market in both US and EAFE sample. However, the passive approach did not show to be superior. The factor strategies and market are significantly negatively correlated and impressively complement each other. The combined Smart Factors and market portfolio vastly outperforms both factors and market throughout the sample in both markets. With the combined approach, the ever-present market falls can be at least mitigated or profitable thanks to the factors.

Continue reading

The Knapsack problem implementation in R

16.October 2020

Our own research paper ESG Scores and Price Momentum Are More Than Compatible utilized the Knapsack problem to make the ESG strategies more profitable or Momentum strategies significantly less risky. The implementation of the Knapsack problem was created in R, using slightly modified Simulated annealing optimization algorithm. Recently, we have been asked about our implementation and the code. The code is commented and probably could be implemented more efficiently (in R or in another programming language). For example, R is more efficient with matrices, but the code would not be that “straightforward”. Lastly, the most important tuning parameter is the temperature decrease (the probability of accepting a new solution is falling with the rising number of iterations).

Continue reading

Multi-Asset Skewness Trading Strategy

19.August 2020

The best course of action for every quant researcher is to try to fundamentally understand anomalies and explore their functioning besides the original scope of the academic research papers. The goal of this article was to look for inspiration and further explore the Skewness affect – the tendency of assets with the lowest skewness to outperform assets with the highest skewness. It seems that this anomaly is present not only in commodities but also in currencies, fixed income and equities. Trading strategy that exploits the effect of skewness in the multi-asset setting would earn an annual return of 7.67% when leveraged to the 15% volatility.

Continue reading

Subscribe for Newsletter

Be first to know, when we publish new content

    The Encyclopedia of Quantitative Trading Strategies

    Log in