Own-research

A Robust Approach to Multi-Factor Regression Analysis

24.February 2021

Practitioners widely use asset pricing models such as CAPM or Fama French models to identify relationships between their portfolios and common factors. Moreover, each asset class has some widely-recognized asset pricing model, from equities through commodities to even cryptocurrencies. 

However, which model can we use if our portfolio is complex and consists of many asset classes? Which factors should we include and which should we omit? (Especially if we have a database that consists of several hundreds of potential factors). Additionally, we know that equities influence bonds, commodities influence equities and vice versa. Hence the question, what about the cross-asset relationships? 

These are the problems and questions we faced when looking for a methodology for our Multi-Factor Analysis report in the Quantpedia Pro platform. This blog post aims to introduce the model, its logic and the method we have decided to use. 

Continue reading

The Active vs Passive: Smart Factors, Market Portfolio or Both?

11.December 2020

While there may be debates about passive and active investing, and even blogs about the numbers of active funds that were outperformed by the market, the history taught us that the outperformance of active or passive investing is cyclical. As a proxy for the active investing, the new Quantpedia’s research paper examines factor strategies and their smart allocation using fast or slow time-series momentum signals, the relative weights based on the strength of the signals and even blending the signals. While the performance can be significantly improved, using those smart approaches, the factors still got beaten by the market in both US and EAFE sample. However, the passive approach did not show to be superior. The factor strategies and market are significantly negatively correlated and impressively complement each other. The combined Smart Factors and market portfolio vastly outperforms both factors and market throughout the sample in both markets. With the combined approach, the ever-present market falls can be at least mitigated or profitable thanks to the factors.

Continue reading

The Knapsack problem implementation in R

16.October 2020

Our own research paper ESG Scores and Price Momentum Are More Than Compatible utilized the Knapsack problem to make the ESG strategies more profitable or Momentum strategies significantly less risky. The implementation of the Knapsack problem was created in R, using slightly modified Simulated annealing optimization algorithm. Recently, we have been asked about our implementation and the code. The code is commented and probably could be implemented more efficiently (in R or in another programming language). For example, R is more efficient with matrices, but the code would not be that “straightforward”. Lastly, the most important tuning parameter is the temperature decrease (the probability of accepting a new solution is falling with the rising number of iterations).

Continue reading

Subscribe for Newsletter

Be first to know, when we publish new content


    logo
    The Encyclopedia of Quantitative Trading Strategies

    Log in