Stock picking

Short Sellers: Informed Liquidity Suppliers

18.October 2024

Short sellers often have a bad reputation, seen as market disruptors who profit from declining prices. Yet, they play a crucial role in making markets more efficient by identifying overvalued assets and correcting mispricings. A recent study uncovers another surprising aspect of their behavior: rather than just demanding liquidity, the most informed short sellers actually provide it. Using transaction-level data, the research shows that these traders supply liquidity, especially on news days and when trading on known anomalies, challenging the conventional view of short sellers as merely aggressive market participants.

Continue reading

Valuing Stocks With Earnings

1.October 2024

Today, we will venture a little into the fundamental analysis corner, and we will give you a glimpse of an intriguing paper (Hillenbrand and McCarthy, 2024) that discusses the advantages of using ‘Street’ earnings over traditional GAAP earnings. The paper suggests that ‘Street’ earnings provide better valuation estimates and improved financial analysis. Is this a way how to improve the performance of the struggling equity value factor?

Continue reading

Outperforming Equal Weighting

2.August 2024

Equal-weighted benchmark portfolios are sometimes overshadowed by the more popular market capitalization benchmarks but are still popular and often used in practice. One of the advantages of equal-weighted portfolios is that academic research shows that in the long term, they tend to outperform their market-cap-weighted peers, mainly due to positive loadings on well-known factor premiums like size and value. So, if equal weighting outperforms market-cap weighting (in the long term), what options do we have if we want to outperform equal weighting? A recent paper by Cirulli and Walker comes to our aid with an interesting proposal …

Continue reading

The Expected Returns of Machine-Learning Strategies

29.July 2024

Does the investment in sophisticated machine learning algorithm research and development pay off? It is an important question, especially in light of the increasing costs related to the R&D of such algorithms and the possibility of decreasing returns for some methods developed in the more distant past. A recent paper by Azevedo, Hoegner, and Velikov (2023) evaluates the expected returns of machine learning-based trading strategies by considering transaction costs, post-publication decay, and the current high liquidity environment. The obstacles are not low, but research suggests that despite high turnover rates, some machine learning strategies continue to yield positive net returns.

Continue reading

Combining Discretionary and Algorithmic Trading

25.July 2024

The area we want to explore today is an interesting intersection between quantitative and more technical approaches to trading that employ intuition and experience in strictly data-driven decision-making (completely omitting any fundamental analysis!). Can just years of screen time and trading experience improve the metrics and profitability of trading systems through discretionary trading actions and decisions?

Continue reading

Oh My! I Bought A Wrong Stock! – Investigation of Lead-Lag Effect in Easily-Mistyped Tickers

20.June 2024

Our new study aims to investigate the lead-lag effect between prominent, widely recognized stocks and smaller, less-known stocks with similar ticker symbols (for example, TSLA / TLSA), a phenomenon that has received limited attention in financial literature. The motivation behind this exploration stems from the hypothesis that investors, especially retail investors, may inadvertently trade on less-known stocks due to ticker symbol confusion, thereby impacting their price movements in a manner that correlates with the leading stocks. By examining this potential misidentification effect, our research seeks to shed some light on this interesting factor.

Continue reading
Subscription Form

Subscribe for Newsletter

 Be first to know, when we publish new content
logo
The Encyclopedia of Quantitative Trading Strategies

Log in

QuantPedia
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.