An Empirical Analysis of Conference-Driven Return Drift in Tech Stocks
Corporate conferences have long been recognized as pivotal events in financial markets, serving as catalysts that signal upcoming innovations and strategic shifts. Scheduled corporate events induce market reactions that can be systematically analyzed to reveal predictable return patterns. In this work, we focus on examining the return drift exhibited by technology stocks in the days surrounding their respective conferences, employing simple quantitative methods with daily price data.
The hypothesized return drift is premised on the notion that investor sentiment and market dynamics are significantly altered by the information disseminated at these conferences. Investors, reacting to both anticipatory signals and post-announcement adjustments, tend to drive prices in a measurable manner in the windows immediately preceding, during, and after the events. By systematically analyzing stocks of companies such as Apple, Google, and Microsoft, this study aims to validate the existence of these drift patterns and shed light on the underlying mechanisms, thereby enhancing mutual understanding of event-driven asset pricing dynamics.