Alternative data

Does Social Media Sentiment Matter in the Pricing of U.S. Stocks?

15.March 2021

Although the models cannot entirely capture the reality, they are essential in the analysis and problem solving, and the same could be said about asset pricing models. These models had a long journey from the CAPM model to the most recent Fama French five-factor model. However, the asset pricing models still rely on fundamentals, and as we see in the practice every day, the financial markets or investors are not always rational, and prices tend to deviate from their fundamental values. Past research has already suggested that the assets are driven by both the fundamentals and sentiment. The novel research of Koeppel (2021) continues in the exploration of the hypothesis mentioned above and connects the sentiment with the factors in Fama´s and French´s methodology. The most interesting result of the research is the construction of the sentiment risk factor based on the direct search-based sentiment indicators. The data are sourced by the MarketPsych that analyze information flowing on social media. For comparison, public news is not a source of such exploitable sentiment indicator.

The sentiment score extracted from social media can be exploited to augment the Fama French five factors model. Based on the results, this addition seems to be justified. Adding the sentiment to the pure fundamental model explains more variation and reduce the alphas (intercepts). Moreover, the factor is unrelated to the well-known and established risk factors utilized in the previous asset pricing models, including the momentum. Finally, the sentiment factor seems to be outperforming several other factors, even those established as the smart beta factors.

Continue reading

The Knapsack problem implementation in R

16.October 2020

Our own research paper ESG Scores and Price Momentum Are More Than Compatible utilized the Knapsack problem to make the ESG strategies more profitable or Momentum strategies significantly less risky. The implementation of the Knapsack problem was created in R, using slightly modified Simulated annealing optimization algorithm. Recently, we have been asked about our implementation and the code. The code is commented and probably could be implemented more efficiently (in R or in another programming language). For example, R is more efficient with matrices, but the code would not be that “straightforward”. Lastly, the most important tuning parameter is the temperature decrease (the probability of accepting a new solution is falling with the rising number of iterations).

Continue reading

Alternative Data Screener on Quantpedia

11.May 2020

Global interest in alternative datasets is growing strongly. We at Quantpedia are looking on this emerging trend with curiosity too.

We are happy to announce Quantpedia’s cooperation with DDQIR, an alternative data-driven quantitative research company, which maintains an extensive database of alternative data providers. Their PHUMA Platform contains information about the majority of available alternative datasets and detailed characterization offers the possibility for the in-depth data-discovery process. DDQIR will operate a simplified demo of their tool for us on a separate Quantpedia’s sub-page.

Continue reading

Top Ten Blog Posts on Quantpedia in 2019

29.December 2019

The end of the year is a good time for a short recapitulation. Apart from other things we do (which we will summarize in our next blog in a few days), we have published around 50 short blog posts / recherches of academic papers on this blog during the last year. We want to use this opportunity to summarize 10 of them, which were the most popular (based on Google Analytics tool). Maybe you will be able to find something you have not read yet …

Continue reading

Quant’s Look on ESG Investing Strategies

13.December 2019

ESG Investing (sometimes called Socially Responsible Investing) is becoming a current trend, and its proponents characterize it as a modern, sustainable, and responsible way of investing. Some people love it, others see it as just another fad that will soon be forgotten. We at Quantpedia have decided to immerse in academic research related to this trend to understand it better. How are ESG scores measured? What are the common problems in ESG data? Are there any systematic ESG factor strategies that offer outperformance? These are some of the areas we wanted to explore, and we invite you on this journey with us …

Continue reading

Subscribe for Newsletter

Be first to know, when we publish new content


    logo
    The Encyclopedia of Quantitative Trading Strategies

    Log in