Factor investing

Factor’s Performance During Various Market Cycles

28.December 2022

Today, we analyze how all the factors we use in our Multi-Factor Regression Model performed during various Market Cycles (in sample), including the Bull/ Bear market, the High/ Low inflation, and the Rising/ Falling interest rates. Further, we also examine the performance of a Balanced Portfolio ETF – AOR, over past 100 years. This is done by creating the Factor AOR, which we constructed using our Multi-Factor Regression Model from AOR ETF. In addition to a chart comparison of equity curves, we also compare the performance of factor AOR to that of all the factors by means of risk/return tables, i.e. quantitatively. All the tables are sorted based on the Sharpe ratio from the best (at the top) to the worst (at the bottom).

Continue reading

A Balanced Portfolio and Trend-Following During Different Market States

19.December 2022

What’s the performance of a balanced portfolio during rising rates? How does it behave when inflation is high? What about a combination of these market states? And how do trend-following strategies fare in such an environment? These and even more questions we will attempt to resolve in our today’s article. We will be looking at different market cycles and how a balanced portfolio and a typical trend-following strategy perform over these different market states.

Continue reading

100 Years of Historical Market Cycles

16.December 2022

Which assets perform best when rates are rising, and inflation is high? And what happens if rates are still rising but inflation is already falling? And what’s the impact of the business cycle? These are the questions that everyone is currently trying to answer. Today, we will start a longer series of articles with the goal of giving an exact quantitative answer to all questions related to cycles in inflation, interest rates, and economic growth. This series of articles can also serve as an introduction to the methodology that we will use in the upcoming Quantpedia Pro report.

Continue reading

Quantum Computing as the Means to Algorithmic Trading

9.December 2022

The topic of quantum computing has been gaining popularity recently, and both the scientific community and investors seem to have high hopes for its future. It seems that this brand-new technology could revolutionize various aspects of computing as we currently know them. Great contributions could be made in the fields of medicine and healthcare, security, and computability [1], as well as in the field of finances, which interests us here at Quantpedia the most. Quantum computers are especially great in optimization tasks, so optimizing a portfolio could be one of the key contributions in our interest. [2] In this article, we would like to introduce the concept of quantum computers, their current state, their potential use in finance, and more.

Continue reading

Reviewing Patent-to-Market Trading Strategies

16.November 2022

The following article is a short distillation of the research paper Leveraging the Technical Competence of a Stock for the Purpose of Trading written by Rishabh Gupta. The author spent a summer internship at Quantpedia, investigating the Patent-to-Market (PTM) ratio developed by Jiaping Qiu, Kevin Tseng, and Chao Zhang. The PTM ratio uses public information about the number and dates of patents assigned to publicly listed companies, calculates an expected market value of patents, and tries to predict future stock performance.

Continue reading

Impact of Dataset Selection on the Performance of Trading Strategies

14.November 2022

It would be great if the investment factors and trading strategies worked all around the world without change and under all circumstances. But, unfortunately, it doesn’t work like that. Some of the strategies are market-specific, as shown in this short analysis. The Chinese market has its own specifics, mainly higher representation of retail investors and lower efficiency. And it’s not alone; countless strategies work just in cryptocurrencies, selected futures, or some other derivatives markets. So, what’s the takeaway? Simple, it’s really important to understand that each anomaly is linked to the underlying dataset and market structure, and we need to account for it in our backtesting process.

Continue reading
Subscription Form

Subscribe for Newsletter

 Be first to know, when we publish new content
logo
The Encyclopedia of Quantitative Trading Strategies

Log in

QuantPedia
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.