Value

What’s the Best Factor for High Inflation Periods? – Part I

11.April 2022

Another period of long sustained high inflation is probably right around the corner, as the Russia-Ukraine Conflict keeps evolving, and its end is nowhere to be seen. In this article, we analyzed the Consumer Price Index from the Federal Reserve Bank of Minneapolis, which includes the rate of inflation in the USA since 1913. We found multiple years during which the inflation was abnormally high and analyzed the performance of the known equity long-short factors. The factors with the highest average performance are HML (value stocks), long-term reversal, momentum, and energy stocks. On the other hand, tech stocks, bond-like assets, and the SMB factor should be avoided during the high inflation periods.

Continue reading

Nuclear Threats and Factor Performance – Takeaway for Russia-Ukraine Conflict

31.March 2022

The Russian invasion of Ukraine and its repercussions continue to occupy front pages all around the world. While using nuclear forces in war is probably a red line for all of the mature world, there is still possible to use nuclear weapons for blackmailing. What will be the impact of such an event on financial markets? It’s not easy to determine, but we tried to identify multiple events in the past which were also slightly unexpected and carried an indication of nuclear threat and then analyzed their impact on financial markets.

Continue reading

Factor Performance in Cold War Crises – A Lesson for Russia-Ukraine Conflict

8.March 2022

The Russia-Ukraine war is a conflict that has not been in Europe since WW2. And it has great implications not only on human lives but also on security prices. It bears numerous characteristics of the cold war crises, where two nuclear powers (Soviet Union and USA/NATO) were often very close to hot war or were waging a proxy war in 3rd countries. We thought it might be wise to look at similar periods from the past to understand what happens in such situations. We selected five events and analyzed the performance of main equity factors (market, HML, SMB, momentum & 2x reversal) and energy and fixed income proxy portfolios.

Continue reading

Out-of-sample Dataset Before the “Sample”: Pervasive Anomalies Before 1926

30.November 2021

Data are the key to systematic investing/trading strategies. The hypotheses testing, risk or return evaluations, correlations, and factor loadings rely on past data and backtests. With an increasing speed of publication in finance, critiques of quantitative strategies have emerged. Strategies seem to decay in alpha, post-publication returns tend to be lower, and many strategies become insignificant once rigorously tested (in or out-of-sample). Moreover, some might even appear profitable purely by chance and the repetitive examination of the same dataset, such as CRSP stocks after 1963. 

Is there any solution to overcome these limitations? Partially, the design of the novel machine learning strategies consisting of training, validation, and testing sets might help. Perhaps the most crucial part of such a scheme is the usage of the purely out-of-sample dataset. In this regard, the novel research by Baltussen et al. (2021) provides several valuable findings for the most recognized factors. The authors constructed a database of U.S. stocks, including dividends and market caps for 1488 major stocks from 1866 to 1926. The sample can be described as the pre-CRSP period, including independent, pre-publication, and “out-of-sample” data that can be a perfect test for the factors utilized today. 

Continue reading

Three Simple Tactical FX Hedging Strategies

8.October 2021

There are many ways one can lose money when investing, and exchange rates are one of the potential risk factors. Luckily, there are several ways to minimize this type of loss in your portfolio. Systematic FX hedging that uses currency factor strategies is a way of protecting an existing or anticipated position from an unwanted move in an exchange rate. It does not eliminate the risk of loss completely but helps to manage currency exposure better.

Continue reading

Asset Pricing Models in China

27.September 2021

The CAPM model was a breakthrough for asset pricing, but the times where the market factor was most widely used are long gone. Nowadays, if we exaggerate a bit, we have as many factors as we want. Therefore, it might not be straightforward which factor model should be used. 

Hanauer et al. (2021) provide several insights into factor models. The authors postulate that the factor models should be examined in the international samples since this can be understood as a test for asset pricing models. The domestic Chinese A-shares stock market seems to be an excellent “playground” for the factors models, given the size of the Chinese stock market, but mainly because of its uniqueness. The paper compares the models (and factors) based on various methods (performance, data-driven asset pricing framework, test assets, turnovers and even transaction costs). Apart from valuable insights into the several less-known factors, the key takeaway message could be that the “US classic” Fama-French factor models perform poorly in China. The modified Fama-French six-factor model or q-factor is better, but overall, it seems that factor models designed for China, such as the model of Liu, Stambaugh and Yuan (2019), are the best.

Continue reading

Subscribe for Newsletter

Be first to know, when we publish new content


    logo
    The Encyclopedia of Quantitative Trading Strategies

    Log in