Machine Learning Execution Time in Asset Pricing
Machine Learning will quite certainly continue to be a hot topic in 2024, and we are committed to bringing you new developments and keeping you in the loop. Today, we will review original research from Demirbaga and Xu (2023) that highlights the critical role of machine learning model execution time (combination of time for ML training and prediction) in empirical asset pricing. The temporal efficiency of machine learning algorithms becomes more pivotal, given the necessity for swift investment decision-making based on the predictions generated from a lot of real-time data. Their study comprehensively evaluates execution time across various models and introduces two time-saving strategies: feature reduction and a reduction in time observations. Notably, XGBoost emerges as a top-performing model, combining high accuracy with relatively low execution time compared to other nonlinear models.