Equity long short

Machine Learning Execution Time in Asset Pricing

16.January 2024

Machine Learning will quite certainly continue to be a hot topic in 2024, and we are committed to bringing you new developments and keeping you in the loop. Today, we will review original research from Demirbaga and Xu (2023) that highlights the critical role of machine learning model execution time (combination of time for ML training and prediction) in empirical asset pricing. The temporal efficiency of machine learning algorithms becomes more pivotal, given the necessity for swift investment decision-making based on the predictions generated from a lot of real-time data. Their study comprehensively evaluates execution time across various models and introduces two time-saving strategies: feature reduction and a reduction in time observations. Notably, XGBoost emerges as a top-performing model, combining high accuracy with relatively low execution time compared to other nonlinear models.

Continue reading

What’s the FED Perspective on Inflation Surprises and Equity Returns

21.December 2023

The period of high inflation in the 1970s prompted researchers to carefully examine the relationship between inflation and stock returns and to look for ways to avoid unexpected inflation. The year 2022 brought back inflationary pressures to the U.S. economy not seen in more than 40 years, and this has spurred new efforts to answer long-standing questions about inflation and asset prices. Authors from the Board of Governors of the Federal Reserve System (2023) bring a fresh perspective on this topic, and their paper allows us to get a FED insider’s view on the ageless question of how inflation affects equity returns.

Continue reading

Cyber Risk and the Cross-Section of Stock Returns

12.December 2023

In today’s fast world, where information flows freely and transactions happen at the speed of light, the significance of cybersecurity cannot be overstated. But it’s no longer just a concern for IT professionals or tech enthusiasts. The specter of well-documented hacks and phishing incidents casts a long shadow over investors, acting as powerful illustrations of how security breaches, vulnerabilities, and cyber threats can reverberate through financial markets. In this blog post, we’ll delve into the intricate relationship between cybersecurity risk and stock performance, uncovering how these digital hazards can influence financial markets.

Continue reading

What Can We Extract From the Financial Influencers’ Advice?

1.December 2023

Social media are often the main and primary choice of information in almost every area of our lives, and they also influence the financial decisions of retail traders and investors. A lot of people give opinions anywhere on the Internet; some are respected, others are disrespected, some are more well-known, and others obscure. But the power of those people, financial influencers, as a group, is substantial as they create the market sentiment. But what’s the real value of their advice? Can we extract useful information from their opinions?

Continue reading

Less is More? Reducing Biases and Overfitting in Machine Learning Return Predictions

13.November 2023

Machine learning models have been successfully employed to cross-sectionally predict stock returns using lagged stock characteristics as inputs. The analyzed paper challenges the conventional wisdom that more training data leads to superior machine learning models for stock return predictions. Instead, the research demonstrates that training market capitalization group-specific machine learning models can yield superior results for stock-level return predictions and long-short portfolios. The paper showcases the impact of model regularization and highlights the importance of careful model design choices.

Continue reading

Decreasing Returns of Machine Learning Strategies

10.November 2023

Traditional asset pricing literature has yielded numerous anomaly variables for predicting stock returns, but real-world outcomes often disappoint. Many of these predictors work best in small-cap stocks, and their profitability tends to decline over time, particularly in the United States. As market efficiency improves, exploiting these anomalies becomes harder. The fusion of machine learning with finance research offers promise. Machine learning can handle extensive data, identify reliable predictors, and model complex relationships. The question is whether these promises can deliver more accurate stock return predictions…

Continue reading
Subscription Form

Subscribe for Newsletter

 Be first to know, when we publish new content
logo
The Encyclopedia of Quantitative Trading Strategies

Log in