Machine learning

BERT Model – Bidirectional Encoder Representations from Transformers

12.April 2023

At the end of 2018, researchers at Google AI Language made a significant breakthrough in the Deep Learning community. The new technique for Natural Language Processing (NLP) called BERT (Bidirectional Encoder Representations from Transformers) was open-sourced. An incredible performance of the BERT algorithm is very impressive. BERT is probably going to be around for a long time. Therefore, it is useful to go through the basics of this remarkable part of the Deep Learning algorithm family.

Continue reading

Can We Backtest Asset Allocation Trading Strategy in ChatGPT?

31.March 2023

It’s always fun to push the boundaries of technology and see what it can do. The AI chatbots are the hot topic of current discussion in the quant blogosphere. So we have decided to test OpenAI’s ChatGPT abilities. Will we persuade it to become a data analyst for us? While we may not be there yet, it’s clear that AI language models like ChatGPT can soon revolutionize how we approach to finance and data analysis.

Continue reading

Which Factors Drive the Hedge Fund Returns: A Machine Learning Approach

10.March 2023

Arbitrage is a central concept in finance. It is defined as simultaneous long and short positions in similar assets to exploit mispricing. Hedge funds experienced fast growth over the past three decades, as real-world arbitrageurs as a group. As they increasingly influence the financial market, it is important to understand the economic drivers of hedge fund returns. Therefore we would like to present a paper dealing with the development of a parsimonious factor model, based on anomalies, to explain hedge fund returns.

Continue reading

Is There Any Hidden Information in Annual Reports’ Images?

29.March 2022

Can the number or type of images in a firm’s annual report tell us anything about the firm? Or is it just a marketing strategy that doesn’t hold any further information? With the help of novel machine learning techniques, the authors Azi Ben-Rephael, Joshua Ronen, Tavy Ronen, and Mi Zhou study this problem in their paper “Do Images Provide Relevant Information to Investors? An Exploratory Study”. It seems that the proposed metrics help to forecast some of the firms’ fundamental ratios.

Continue reading

How to Use Deep Order Flow Imbalance

6.October 2021

Order book information is crucial for traders, but it can be complex. With the numbers of stocks listed in stock exchanges, it is impossible to track all the available information for the human mind. Therefore, the order flows could be an interesting dataset for machine learning models. The novel research of Kolm, Turiel and Westray (2021) utilizes deep-learning for high-frequency return forecasts for 115 NASDAQ stocks based on order book information at the most granular level.

The paper has several key contributions. Firstly, it does not forecast one single return but rather a whole vector of returns – a term structure consisting of mid-price return forecasts at a specified horizon. The forecasted term structure provides essential information about the most optimal execution algorithms (or a trading strategy). According to the authors, forecasts have an „accuracy peak“ at two price changes, after which the accuracy declines. Secondly, the paper compares several methods: autoregressive model with exogenous inputs, MLP, LSTM, LSTM-MLP, stacked LSTM, and CNN-LSTM. Therefore, the article could also serve as a horse race across several possible forecasting methods. Lastly, using more traditional statistical approaches, the authors have identified a better forecasting performance in more information-rich stocks. As a result, this novel research could benefit many areas such as high-frequency trading (but trading costs must be considered), optimal execution strategy, or market-making.

Continue reading

Introduction to Clustering Methods In Portfolio Management – Part 1

16.September 2021

At the beginning of October, we plan to introduce for our Quantpedia Pro clients a new Quantpedia Pro report dedicated to clustering methods in portfolio management. The theory behind this report is more extensive; therefore, we have decided to split the introduction into our methodology into three parts. We will publish them in the next few weeks before we officially unveil our reporting tool. This first short blog post introduces three clustering methods as well as three methods that select the optimal number of clusters. The second blog will apply all three methods to model ETF portfolios, and the final blog will show how to use portfolio clustering to build multi-asset trading strategies.

Continue reading
Subscription Form

Subscribe for Newsletter

 Be first to know, when we publish new content
logo
The Encyclopedia of Quantitative Trading Strategies

Log in