Machine learning

Which Factors Drive the Hedge Fund Returns: A Machine Learning Approach

10.March 2023

Arbitrage is a central concept in finance. It is defined as simultaneous long and short positions in similar assets to exploit mispricing. Hedge funds experienced fast growth over the past three decades, as real-world arbitrageurs as a group. As they increasingly influence the financial market, it is important to understand the economic drivers of hedge fund returns. Therefore we would like to present a paper dealing with the development of a parsimonious factor model, based on anomalies, to explain hedge fund returns.

Continue reading

Is There Any Hidden Information in Annual Reports’ Images?

29.March 2022

Can the number or type of images in a firm’s annual report tell us anything about the firm? Or is it just a marketing strategy that doesn’t hold any further information? With the help of novel machine learning techniques, the authors Azi Ben-Rephael, Joshua Ronen, Tavy Ronen, and Mi Zhou study this problem in their paper “Do Images Provide Relevant Information to Investors? An Exploratory Study”. It seems that the proposed metrics help to forecast some of the firms’ fundamental ratios.

Continue reading

How to Use Deep Order Flow Imbalance

6.October 2021

Order book information is crucial for traders, but it can be complex. With the numbers of stocks listed in stock exchanges, it is impossible to track all the available information for the human mind. Therefore, the order flows could be an interesting dataset for machine learning models. The novel research of Kolm, Turiel and Westray (2021) utilizes deep-learning for high-frequency return forecasts for 115 NASDAQ stocks based on order book information at the most granular level.

The paper has several key contributions. Firstly, it does not forecast one single return but rather a whole vector of returns – a term structure consisting of mid-price return forecasts at a specified horizon. The forecasted term structure provides essential information about the most optimal execution algorithms (or a trading strategy). According to the authors, forecasts have an „accuracy peak“ at two price changes, after which the accuracy declines. Secondly, the paper compares several methods: autoregressive model with exogenous inputs, MLP, LSTM, LSTM-MLP, stacked LSTM, and CNN-LSTM. Therefore, the article could also serve as a horse race across several possible forecasting methods. Lastly, using more traditional statistical approaches, the authors have identified a better forecasting performance in more information-rich stocks. As a result, this novel research could benefit many areas such as high-frequency trading (but trading costs must be considered), optimal execution strategy, or market-making.

Continue reading

Introduction to Clustering Methods In Portfolio Management – Part 1

16.September 2021

At the beginning of October, we plan to introduce for our Quantpedia Pro clients a new Quantpedia Pro report dedicated to clustering methods in portfolio management. The theory behind this report is more extensive; therefore, we have decided to split the introduction into our methodology into three parts. We will publish them in the next few weeks before we officially unveil our reporting tool. This first short blog post introduces three clustering methods as well as three methods that select the optimal number of clusters. The second blog will apply all three methods to model ETF portfolios, and the final blog will show how to use portfolio clustering to build multi-asset trading strategies.

Continue reading

How to Use Lexical Density of Company Filings

10.September 2021

The application of alternative data is currently a strong trend in the investment industry. We, too, analyzed few datasets in the past, be it ESG datasentiment, or company fillings. This article continues the exploration of the alt-data space. This time, we use the research paper by Joenväärä et al., which shows that lexically diverse hedge funds outperform lexically homogeneous as an inspiration for us to analyze various lexical metrics in 10-K & 10-Q reports. Once again, we show that it makes sense to transmit ideas from one research paper to completely different asset class.

Continue reading

New Machine Learning Model for CEOs Facial Expressions

9.August 2021


Nowadays, it is a standard that fillings such as 10-Ks and 10-Qs are analyzed with machine learning models. ML models can extract sentiment, similarity metrics and many more. However, words are not everything, and we humans also communicate in other forms. For example, we show our emotions through facial expressions, but the research on this topic in finance is scarce. Novel research by Banker et al. (2021) fills the gap and examines the CEOs facial expressions during CNBC’s video interviews about corporate earnings.

Continue reading

Subscribe for Newsletter

Be first to know, when we publish new content


    logo
    The Encyclopedia of Quantitative Trading Strategies

    Log in