Alternative data

Are Alternative Social Data Predictors Useful for Effective Allocation to Country ETFs?

29.November 2023

The part of the attention of our own research from the last few months was a little skewed on the side of countries’ indices and their corresponding ETFs representing them, and we finally conclude our “trilogy” of investigation on the efficiency of these markets. Firstly, we analyzed price-based valuation measures, and then, in November, we investigated the impact of military expenditures on the performance of international stock markets. We will wrap up this mini-series by analyzing a few additional alternative datasets containing variables we thought might be of interest in meaningfully describing each country’s societal standing – the climate change awareness index, the happiness score, the corruption perception index, and the income inequality score.

Continue reading

Military Expenditures and Performance of the Stock Markets

15.November 2023

“Si vis pacem, para bellum”, is an old Roman proverb translated to English as “If you want peace, prepare for war”, and it is the main idea behind the military policy of a lot of modern national states. In the current globally interconnected world, waging a real “hot war” has very often really negative trade and business repercussions (as the Russian Federation realized in 2022). Still, even though wars among developed nations are luckily not as popular as they used to be, modern states heavily invest in their own defense. Nobody wants to be caught military unprepared in case of a local or global geopolitical crisis. A strong military should bring a safe environment to do business, and trade should flourish uninterrupted. But are all those national military expenditures financially rewarded? Do stock markets of countries with a strong military outperform their peers? That’s the question we have decided to answer in the following analysis.

Continue reading

Exploration of the Arbitrage Co-movement Effect in ETFs

23.May 2023

We continue our short series of articles dedicated to the exploration of trading strategies that derive their functionality from the deep understanding of how Exchange Trading Funds (ETFs) work. In our first post, we discussed how we could use the ETF flows to predict subsequent daily ETF performance. In today’s article, we will analyze how we can use the information about the sensitivity of individual stocks to the ETF arbitrage activity to build a profitable equity factor trading strategy.

Continue reading

How Much Are Bitcoin Returns Driven by News?

30.November 2022

The main theme of these days in the crypto world is unmistakenly clear, it’s the mayhem connected with the collapse of the FTX empire, insolvencies of various lenders, and questions about underlying holdings in GBTC OTC ETF and reserves of exchanges and Tether (or other stablecoins as well). With new information, nothing does paint a bright picture of this industry in the financial world now and in the near future. Calls for finally working regulations are getting stronger and stronger, while politicians (and central bankers) are still active on Central Bank Digital Currencies (CBDCs) proposals. While Bitcoin survived several crypto winters, long-term investors are continuing their DCA-ing and “stashing Satoshis” Are they safe? Do they pay attention to the surrounding news? In our blog entry, we will focus on the question of how news impact Bitcoin returns, being both the most famous cryptocurrency and also the one with the highest market capitalization.

Continue reading

Reviewing Patent-to-Market Trading Strategies

16.November 2022

The following article is a short distillation of the research paper Leveraging the Technical Competence of a Stock for the Purpose of Trading written by Rishabh Gupta. The author spent a summer internship at Quantpedia, investigating the Patent-to-Market (PTM) ratio developed by Jiaping Qiu, Kevin Tseng, and Chao Zhang. The PTM ratio uses public information about the number and dates of patents assigned to publicly listed companies, calculates an expected market value of patents, and tries to predict future stock performance.

Continue reading

How to Improve Post-Earnings Announcement Drift with NLP Analysis

11.October 2022

Post–earnings-announcement drift (abbr. PEAD) is a well-researched phenomenon that describes the tendency for a stock’s cumulative abnormal returns to drift in the direction of an earnings surprise for some time (several weeks or even several months) following an earnings announcement. There have been many explanations for the existence of this phenomenon. One of the most widely accepted explanations for the effect is that investors under-react to the earnings announcements. Although we already addressed such an effect in some of our previous articles and strategies, we now present a handy method of improving the PEAD by using linguistic analysis of earnings call transcripts.

Continue reading
Subscription Form

Subscribe for Newsletter

 Be first to know, when we publish new content
logo
The Encyclopedia of Quantitative Trading Strategies

Log in

QuantPedia
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.