Factor investing

Cyber Risk and the Cross-Section of Stock Returns

12.December 2023

In today’s fast world, where information flows freely and transactions happen at the speed of light, the significance of cybersecurity cannot be overstated. But it’s no longer just a concern for IT professionals or tech enthusiasts. The specter of well-documented hacks and phishing incidents casts a long shadow over investors, acting as powerful illustrations of how security breaches, vulnerabilities, and cyber threats can reverberate through financial markets. In this blog post, we’ll delve into the intricate relationship between cybersecurity risk and stock performance, uncovering how these digital hazards can influence financial markets.

Continue reading

What Can We Extract From the Financial Influencers’ Advice?

1.December 2023

Social media are often the main and primary choice of information in almost every area of our lives, and they also influence the financial decisions of retail traders and investors. A lot of people give opinions anywhere on the Internet; some are respected, others are disrespected, some are more well-known, and others obscure. But the power of those people, financial influencers, as a group, is substantial as they create the market sentiment. But what’s the real value of their advice? Can we extract useful information from their opinions?

Continue reading

Are Alternative Social Data Predictors Useful for Effective Allocation to Country ETFs?

29.November 2023

The part of the attention of our own research from the last few months was a little skewed on the side of countries’ indices and their corresponding ETFs representing them, and we finally conclude our “trilogy” of investigation on the efficiency of these markets. Firstly, we analyzed price-based valuation measures, and then, in November, we investigated the impact of military expenditures on the performance of international stock markets. We will wrap up this mini-series by analyzing a few additional alternative datasets containing variables we thought might be of interest in meaningfully describing each country’s societal standing – the climate change awareness index, the happiness score, the corruption perception index, and the income inequality score.

Continue reading

Military Expenditures and Performance of the Stock Markets

15.November 2023

“Si vis pacem, para bellum”, is an old Roman proverb translated to English as “If you want peace, prepare for war”, and it is the main idea behind the military policy of a lot of modern national states. In the current globally interconnected world, waging a real “hot war” has very often really negative trade and business repercussions (as the Russian Federation realized in 2022). Still, even though wars among developed nations are luckily not as popular as they used to be, modern states heavily invest in their own defense. Nobody wants to be caught military unprepared in case of a local or global geopolitical crisis. A strong military should bring a safe environment to do business, and trade should flourish uninterrupted. But are all those national military expenditures financially rewarded? Do stock markets of countries with a strong military outperform their peers? That’s the question we have decided to answer in the following analysis.

Continue reading

Less is More? Reducing Biases and Overfitting in Machine Learning Return Predictions

13.November 2023

Machine learning models have been successfully employed to cross-sectionally predict stock returns using lagged stock characteristics as inputs. The analyzed paper challenges the conventional wisdom that more training data leads to superior machine learning models for stock return predictions. Instead, the research demonstrates that training market capitalization group-specific machine learning models can yield superior results for stock-level return predictions and long-short portfolios. The paper showcases the impact of model regularization and highlights the importance of careful model design choices.

Continue reading

Decreasing Returns of Machine Learning Strategies

10.November 2023

Traditional asset pricing literature has yielded numerous anomaly variables for predicting stock returns, but real-world outcomes often disappoint. Many of these predictors work best in small-cap stocks, and their profitability tends to decline over time, particularly in the United States. As market efficiency improves, exploiting these anomalies becomes harder. The fusion of machine learning with finance research offers promise. Machine learning can handle extensive data, identify reliable predictors, and model complex relationships. The question is whether these promises can deliver more accurate stock return predictions…

Continue reading
Subscription Form

Subscribe for Newsletter

 Be first to know, when we publish new content
logo
The Encyclopedia of Quantitative Trading Strategies

Log in

QuantPedia
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.