Liquidity effect

Evaluating Factor Models in China

21.April 2023

Today, we will evaluate some specifics that are akin to the now second-largest market in the world – China. The abundance of “shell companies” creates a problem when researchers try to uncover sources of alpha in the Chinese market. We present recent research by Zhiyong Li and Xiao Rao (2022) that proposes a new alternative filter, which excludes the stocks with a high estimated shell probability when constructing equity factor models.

Continue reading

Full vs. Synthetic Replication and Tracking Errors in ETFs

11.March 2022

The growth of passive investing and ETFs is indisputable. Consequently, this boom also affects financial markets (e.g., market elasticity or by creating predictable buys and sells) and assets that ETFs track. Even though all passive ETFs aim to replicate some benchmark index, there are two distinct approaches to doing so. The first approach is directly replicating the benchmark (by buying underlying assets) either by full direct replication or sampling. The second approach consists of synthetic replication using derivatives – most commonly by total return swaps (or futures). How do replication methods influence tracking error?

Continue reading

How to Use Exotic Assets to Improve Your Trading Strategy

26.August 2021

As we have mentioned several times, the best course of action for a quant analyst who wants to develop a new trading strategy is to understand a well-known investment anomaly/factor fundamentally and then improve it. Quantpedia is a big fan of transferring ideas derived from academic research from one asset class to another. But that’s not the only possibility of improvement – we can try to embrace Roger Ibbotson’s theory of popularity, which states that popular assets/securities are usually overpriced compared to less-known (exotic) assets/securities. Additionally, more professional investors usually follow popular assets, and this market segment is probably significantly more efficient.

So, we went in this direction. We took a well-known commodity momentum factor strategy and investigated its performance among commodity futures that were part of the S&P GSCI respectively BCOM commodity indexes and then compared the strategy’s performance with a variant that traded only non-indexed commodity futures. As we had expected, the trading strategy using exotic assets performed significantly better.

Continue reading

Novel Market Structure Insights From Intraday Data

19.November 2020

In recent years, financial markets have experienced a boom in passive and index-based strategies, which could have caused a change in the trading volume, volatility, beta or correlations. The reason is straightforward: the index investing causes a lot of stocks to move in the same direction. A novel research Shen and Shi (2020), using high-frequency data, suggests that over the last two decades, the patterns mentioned above have changed and the index investing is the cause. Both the trading volume and stock correlations are increased at the end of trading sessions. Betas are firstly dispersed, but in general, converge to one during the rest of the day. Trading volume has high dispersion at the market open, but low dispersion at the market close. Overall, the paper has many important implications for portfolio managers, risk managers and traders as well since it is closely related to the transaction costs, intraday price fluctuations, correlations or liquidity. Moreover, it is full of exciting charts that are worth seeing.

Continue reading

ETF Liquidity

3.September 2020

Exchange-traded funds (ETFs) have become popular and important investment vehicles in the financial markets. However, that is not a shock given the numerous benefits connected with ETFs. Naturally, they have caught the interest of academics, and there is plenty of literature about strategies on ETFs. While the profits and trading strategies are probably the most important research topics for practitioners, liquidity in the financial markets is almost equally important. Concerning liquidity in the ETFs, novel research by Pham et al. shows when exactly are ETFs the most liquid. Looking on the spreads, they are the lowest at market close. Such a finding can be an essential part of an optimal trading position making, where the aim is to minimize the trading costs.

Authors: Pham, Son Duy and Marshall, Ben R. and Nguyen, Nhut (Nick) Hoang and Visaltanachoti, Nuttawat 

Title: Predicting ETF Liquidity

Continue reading
Subscription Form

Subscribe for Newsletter

 Be first to know, when we publish new content
logo
The Encyclopedia of Quantitative Trading Strategies

Log in