Payout-Adjusted CAPE

19.August 2024

Professor Robert Shiller’s CAPE (cyclically adjusted price-to-earnings) ratio is well-known among the investment community. His methodology for assessing a valuation of the U.S. equity market is undoubtedly the most cited and discussed. Therefore, it’s not surprising that there exists quite a lot of papers that try to refine and expand the CAPE’s methodology. One such last attempt is the work of James White and Victor Haghani, whose research paper revolves around the use of a modified version of the Cyclically-Adjusted Price Earnings (CAPE) ratio, termed P-CAPE. Their methodology aims to improve the estimation of long-term expected real returns of the stock market by incorporating the dividend payout ratio into the traditional CAPE metric.

Continue reading

Quantpedia in July 2024

10.August 2024

Hello all,

What have we accomplished in the last month?

– An extension of the Attribution Analysis report for Quantpedia Pro clients
– 12 new Quantpedia Premium strategies have been added to our database
– 7 new related research papers have been included in existing Premium strategies during the last month
– Additionally, we have produced 7 new backtests written in QuantConnect code
– 4 new blog posts that you may find interesting have been published on our Quantpedia blog in the previous month

Continue reading

Outperforming Equal Weighting

2.August 2024

Equal-weighted benchmark portfolios are sometimes overshadowed by the more popular market capitalization benchmarks but are still popular and often used in practice. One of the advantages of equal-weighted portfolios is that academic research shows that in the long term, they tend to outperform their market-cap-weighted peers, mainly due to positive loadings on well-known factor premiums like size and value. So, if equal weighting outperforms market-cap weighting (in the long term), what options do we have if we want to outperform equal weighting? A recent paper by Cirulli and Walker comes to our aid with an interesting proposal …

Continue reading

The Expected Returns of Machine-Learning Strategies

29.July 2024

Does the investment in sophisticated machine learning algorithm research and development pay off? It is an important question, especially in light of the increasing costs related to the R&D of such algorithms and the possibility of decreasing returns for some methods developed in the more distant past. A recent paper by Azevedo, Hoegner, and Velikov (2023) evaluates the expected returns of machine learning-based trading strategies by considering transaction costs, post-publication decay, and the current high liquidity environment. The obstacles are not low, but research suggests that despite high turnover rates, some machine learning strategies continue to yield positive net returns.

Continue reading

Combining Discretionary and Algorithmic Trading

25.July 2024

The area we want to explore today is an interesting intersection between quantitative and more technical approaches to trading that employ intuition and experience in strictly data-driven decision-making (completely omitting any fundamental analysis!). Can just years of screen time and trading experience improve the metrics and profitability of trading systems through discretionary trading actions and decisions?

Continue reading
Subscription Form

Subscribe for Newsletter

 Be first to know, when we publish new content
logo
The Encyclopedia of Quantitative Trading Strategies

Log in