Factor allocation

Introduction to Clustering Methods In Portfolio Management – Part 2

22.September 2021

October’s is coming, and we continue our short series of introductory articles about portfolio clustering methods we will soon use in our new Quantpedia Pro report. In the previous blog, we introduced three clustering methods and discussed the pros and cons of each one. Additionally, we showed a few examples of clustering, and we presented various methods for picking an optimal number of clusters.

This section demonstrates the Partitioning Around Medoids (PAM) – a centroid-based clustering method, Hierarchical Clustering, which uses machine learning and Gaussian Mixture Model based on probability distribution and applies all three methods to an investment portfolio that consists of eight liquid ETFs.

Continue reading

Community Alpha of QuantConnect – Part 3: Adjusted Social Trading Factor Strategies

20.September 2021

This blog post is the continuation of series about Quantconnect’s Alpha market strategies. Part 1 is here and Part 2 can be found here. This part is related to the factor strategies notoriously known from the majority of asset classes. We continue in the examination of factor strategies built on top of social trading strategies, but in this part, the investment universe is reduced based on the insights of the last part. So, without further ado, we continue where we have left last time.

Continue reading

Introduction to Clustering Methods In Portfolio Management – Part 1

16.September 2021

At the beginning of October, we plan to introduce for our Quantpedia Pro clients a new Quantpedia Pro report dedicated to clustering methods in portfolio management. The theory behind this report is more extensive; therefore, we have decided to split the introduction into our methodology into three parts. We will publish them in the next few weeks before we officially unveil our reporting tool. This first short blog post introduces three clustering methods as well as three methods that select the optimal number of clusters. The second blog will apply all three methods to model ETF portfolios, and the final blog will show how to use portfolio clustering to build multi-asset trading strategies.

Continue reading

Find Your Crisis Hedge – Quantpedia Highlights in August 2021

6.September 2021

Hello all,

What have we accomplished in the last month?

– A new important Crisis Hedge Quantpedia Pro report
– 10 new Quantpedia Premium strategies have been added to our database
– 10 new related research papers have been included in existing Premium strategies during the last month
– Additionally, we have produced 10 new backtests written in QuantConnect code
– And finally, 12 new blog posts that you may find interesting have been published on our Quantpedia blog in the previous month

Continue reading

Factor Exposures of Thematic Indices

31.August 2021

Numerous new businesses are emerging related to autonomous traffic, clean energy, biotechnology, etc. Without any doubt, these new companies look promising and at least the technology behind them seems to be the future. Moreover, this novel trend is also supported by the most prominent index creators S&P and MSCI. Both providers have created numerous thematic indexes connected to these hot industries. The popularity has caused that ETFs are nowhere behind, and as a result, these thematic indexes could be easily tracked. However, popularity itself does not guarantee the best investment, and we should be interested in these indexes in greater detail. A vital insight provides the novel research paper of Blitz (2021). The findings are interesting – the thematic investors bet against quantitative investors or, more precisely, against the most common factors that are well-known from the asset pricing models.

Continue reading

How to Use Exotic Assets to Improve Your Trading Strategy

26.August 2021

As we have mentioned several times, the best course of action for a quant analyst who wants to develop a new trading strategy is to understand a well-known investment anomaly/factor fundamentally and then improve it. Quantpedia is a big fan of transferring ideas derived from academic research from one asset class to another. But that’s not the only possibility of improvement – we can try to embrace Roger Ibbotson’s theory of popularity, which states that popular assets/securities are usually overpriced compared to less-known (exotic) assets/securities. Additionally, more professional investors usually follow popular assets, and this market segment is probably significantly more efficient.

So, we went in this direction. We took a well-known commodity momentum factor strategy and investigated its performance among commodity futures that were part of the S&P GSCI respectively BCOM commodity indexes and then compared the strategy’s performance with a variant that traded only non-indexed commodity futures. As we had expected, the trading strategy using exotic assets performed significantly better.

Continue reading
Subscription Form

Subscribe for Newsletter

 Be first to know, when we publish new content
logo
The Encyclopedia of Quantitative Trading Strategies

Log in